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SUMMARY

The spectral element method is applied on unstructured tetrahedral elements to solve the Navier–Stokes
equations for fully developed laminar �ow in pipes with two planar curvatures. Speci�c implementations
of the spectral element method to double curved pipes and parallelization are described. Previous studies
on �ows in pipes focused on constant curvature or torsion geometries, as well as pipes with varying
curvature. This study focuses on the periodic variation of both the curvature as well as torsion by
analysing a pipe having two planar curvatures. The e�ects of the three parameters de�ning the pipe are
studied to isolate the curvature and torsion e�ect on the magnitude and angle of the secondary �ow.
Furthermore, the geometric e�ects on the wall shear stress are studied, as it is an important �uid �ow
property, especially in blood �ows. Copyright ? 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

A pipe geometry can be de�ned by the curvature and torsion of its centreline as well as by
the cross-sectional pro�le. The e�ects of the cross-sectional pro�les are well understood and
studied. Nevertheless the curvature of a pipe induces a secondary �ow which was �rst studied
by Dean [1] using a perturbation solution. This �uid phenomenon is explained through an
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imbalance of the axial pressure gradient and the centrifugal force, leading to a formation of
a secondary �ow. This secondary �ow is characterized by the movement of the �uid in the
middle toward the outer wall. This �uid impinges on the outer wall and is forced to turn
and move down along the wall to merge at the inner wall. Fluid �ow in curved pipes is
found widely in industrial applications such as: heat exchangers, �uid transport and mixing
as well as power generation, moreover it is found in biological applications such as blood
and air �ow. Curved pipes, implying constant curvature, have been reviewed extensively by
Berger [2] and Ito [3]. Most of the studies up to that point focused on pipes with small
curvature ratios � = D=Rk , where D is the diameter of the pipe and Rk is the radius of
curvature. These laminar �ows are only in�uenced by the Dean number De = Re

√
� and the

inlet �ow conditions, where Re is the Reynolds number and � is the curvature ratio. The Dean
number quanti�es the ratio of a square root of the product of inertial and centrifugal forces
to the viscous forces. Although these �ows are well understood, high Dean number �ows
present speci�c challenges, such as multiple laminar solutions found by Yang [4]. Helical
pipes were studied by Germano [5, 6], Wang [7], Murata [8] and Yamamoto [9] to detail the
torsion e�ect on the �ow. Helical pipes can be de�ned by a constant curvature and torsion,
allowing to study these two e�ects separately. Some of these researchers expanded the second-
order perturbation solution into the helical coordinate system. However, these perturbation
solutions are only valid for small curvature ratios. This restriction has been overcome by
other authors through seeking a numerical solution, mostly employing the Finite Di�erence
and Finite Volume methods. It was found that the �ow in helical pipes is governed by
the Dean number De as well as a new non-dimensional variable Gn the Germano number.
The Germano number quanti�es the ratio of the twisting to the viscous forces, Gn = Re �,
where � is the torsion. Nevertheless most pipes found in nature cannot be de�ned simply by
constant curvature and torsion. To address this, �ows with changing curvatures were studied
by Itmoto [10] and recently by Yang [11], especially for applications in solar heat exchangers
which have periodically varying curvature. Although most of his studies were focused on heat
transfer, the author noticed an increasing pressure drop with increasing curvature for a given
�ow rate. Despite this, no studies up to this point were performed on �ows with both the
variation of curvature and torsion, representing naturally occurring pipes. This study focuses
on such �ows where both the torsion and the curvature are varied periodically. A model pipe
is constructed possessing two planar radii of curvature, representing an arbitrarily curved and
torsioned pipe. The e�ects of changing curvature and torsion are studied through varying the
three parameters describing the model pipe. To capture this complex geometry and obtain
highly accurate solutions, the spectral element method with curved elements, which is an
expansion of the Finite Element Method (FEM), is employed. Details of the spectral element
method implementation are also presented.
Firstly, this paper introduces the basic governing equations and a solution strategy based on

the splitting method. Secondly the spectral element method is summarized and speci�c imple-
mentation to double curved pipes as well as challenges in simple higher order post-processing
are explained. Validation results for the spectral element method of both a manufactured
solution and a curved pipe are presented. Next the model pipe geometry construction pro-
cess is described followed by the results for the variation of the respective radii and num-
ber of periodic periods. Finally, the e�ects of the geometry on the wall shear stress are
described.
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2. GOVERNING EQUATIONS

The main focus of this paper is to study complex �ows, such as the �ows in pipes with two
curvatures, by solving the unsteady incompressible Navier–Stokes equations, which govern
the behaviour of a Newtonian �uid. The Reynolds number is de�ned as Re = UL=�, where
U is a characteristic velocity, L is a characteristic length and � is the kinematic viscosity of
the �uid. These equations are written in the vector form as

@u
@t
+ u · �u= − �p+

1
Re

�2 u in �

� · u=0 in �

where u is the velocity vector and p is the pressure �eld. In order to solve these equations,
boundary and initial conditions need to be applied which can be written as

u= uD on @�D

u(x; 0)= u0(x)

where for simplicity, only Dirichlet domain boundary (@�D) is considered.

3. SOLUTION STRATEGY

The spectral element method is a subset of the method of weighted residuals. Therefore, the
weak formulation of Navier–Stokes equations is reviewed. The appropriate space for the pres-
sure is chosen to be square integrable L2 = {f∈ R3| ∫ f2 d�¡∞} over �, with the integral
over the domain being zero, i.e., L20(�) = {q∈L2| ∫� q d� = 0}. Moreover, for each velocity
component a space of functions v is required such that v∈ [L2(�)] and �v∈ [L2(�)], which
is denoted by H 1

0 (�) and includes the Dirichlet boundary conditions. The weak formulation
of the Navier–Stokes equations becomes, �nd u∈ [H 1

0 (�)]
3 and p∈ [L20(�)] such that(

v;
@u
@t

)
+ (v; u · �u) + 1

Re
(�v;�u) + (v;�p)= (v; f) ∀v∈ [H 1

0 (�)]
3

(� · u; q)=0 ∀q∈[L20(�)]
where the brackets indicate an integral of the internal product over the domain, v are the
test functions for velocity and q are the test functions for pressure. Similar to the FEM
the spectral element method subdivides the domain into a �nite number of non-overlapping
tetrahedral elements

� =
Nel⋃
e=1
�e where

Nel⋂
e=1
�e = ∅

Furthermore, the bases are de�ned in each element such that the summation of all the bases
over all elements with their respective coe�cients describes the approximate solution: u� =∑Ndof

i=1 ûi�i as well as the trial function v. In the Galerkin method the trial functions as well
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as the base functions are the same. The Navier–Stokes equations are discretized temporally
through a second-order implicit scheme such that the matrix formulation becomes(

3
2
1

�t
M+

1
Re
A

)
ûn+1 =Fn+1 +Cn+1(û) +M

1
�t

(
2ûn − 1

2
ûn−1

)
+Dpp̂n+1

Duûn+1 =0

where A is the sti�ness matrix, M is the mass matrix, Dp is the derivative matrix, Fn+1

contains the forcing term and boundary inhomogeneity. These matrices are constructed in the
next section. The convection operator Cn+1(û) is discretized through an explicit third-order
multi-step scheme de�ned by Cardenas [12] such that

Cn+1
j (ûn; ûn−1; ûn−2) = 8

3B
TW(Bûni )(DiBûnj )− 7

3B
TW(Bûn−1i )(DiBûn−1j )

+ 2
3B

TW(Bûn−2i )(DiBûn−2j )

where the matrices B and Di as well as the W vector are de�ned in the next section. The
derivatives are calculated using the precalculated derivatives of the bases. To exclude parasitic
pressure modes a Pp=Pp−2 formulation introduced by Bernardi [13] is used, i.e., the pressure
expansion is two orders lower than the velocity expansion. The splitting method reviewed by
Fischer [14] is used to decouple the pressure by solving for a intermediate velocity, while
ensuring divergence free �ow such that

Hũ=Fn+1 +Cn+1(û) +M
1

�t

(
2ûn − 1

2
ûn−1

)
+Dpp̂n

App̃= − 3
2� t

Duũ

ûn+1 = ũ+
2� t
3
M−1Dpp̃

p̂n+1 = p̂n + p̃

where the Helmholtz matrix is de�ned as H = (32(1=�t)M+(1=Re)A) and Ap is the sti�ness
matrix of the pressure bases. The resulting pressure correction term p̃ is used to correct the
velocity and the pressure at the succeeding timestep.

4. SPECTRAL ELEMENT METHOD

The spectral element method on unstructured meshes developed by Sherwin and Karniadakis
[15, 16] is reviewed here as an expansion of the �nite element method. A new coordinate
system is introduced based on the hexahedral coordinate system. This coordinate system
facilitates the elemental operations such as integration as well as formation of the bases.
Two out of the three coordinate systems are equivalent to the FEM: the physical and refer-
ence coordinates, while the third system is called a collapsed coordinate system and is denoted
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by �1; �2; �3. The latter system is mapped onto the reference coordinate system in three steps:
collapsing the top face of the hexahedron onto a line, collapsing the new line onto a vertex,
and �nally collapsing the square base onto a triangle. This transformation is summarized as

�1 =
4(1 + �1)

(1− �2)(1− �3)
; �2 =

2(1 + �2)
(1− �3)

; �3 = �3

where �1; �2; �3 denotes the reference coordinate system. It is seen that this mapping is singular
at the points �2 = 1 and �3 = 1, which are the vertices C and D, respectively. Conversely the
vertices A and B are de�ned on the base of the tetrahedron such that �3 = −1 and �2 = −1,
while �1 is −1 and 1, respectively. The mapping from the reference coordinate system to the
physical system is identical to standard FEM being based on linear connection of the vertices.
The bases are a subset of the modal hexahedral expansions, where certain faces and edges of
the full hexahedral expansion are chosen and collapsed onto a tetrahedron. These bases are
classi�ed as: vertex, edge, face and interior modes. A vertex mode is a linear function de�ned
as being one at its vertex and zero at the other vertices. Edge modes are de�ned as functions
ranging from quadratic to order p, which are de�ned on its edge and are zero on the other
edges. Face modes are de�ned as functions ranging from quadratic to order p− 1, which are
de�ned at its face and zero on the other faces. Finally an interior mode is de�ned only in the
interior of the element and is zero on the boundaries. Jacobi polynomials are used to form
the bases, as they are orthogonal in the integral inner product with respect to (1− x)�(1+ x)	

and can be formed through a recursive relation. Elemental operations need to be modi�ed in
order to use the new bases which are de�ned on the collapsed coordinate system. The �rst
main elemental operation is the integration, it is performed on the reference coordinate system
equivalent to the FEM such that it becomes

∫
�ref

u@�ref =
∫ 1

−1

∫ 1

−1

∫ 1

−1
u(�1; �2; �3)J�→�@�1 @�2 @�3

=
∫ 1

−1

∫ 1

−1

∫ 1

−1
u(�1; �2; �3)

(
1− �2
2

) (
1− �3
2

)2
@�1 @�2 @�3

=
QGLL∑

i

QGRL∑
j

QGRL∑
k

u(�0;01i ; �
1;0
2j ; �

2;0
3k )w

0;0
i ŵ1;0j ŵ2;0k

ŵ1;0j =
w1;0j

2
ŵ2;0k =

w2;0k

4

where the Jacobian between the reference and collapsed coordinate system is included into
the weights by modifying the Jacobi constant � and 	. The quadrature points are the roots of
the Jacobi polynomial P�;	

N of order N. In the �1 direction, a Gauss–Labatto–Jacobi quadrature
point distribution is used which includes both the endpoints −1 and 1. However, the coordi-
nates �2 and �3 exhibit a singularity at the point �2; �3 = 1. Therefore, Gauss–Radau–Jacobi
quadrature point distribution is used in these directions as this distribution does not include
the endpoint at 1, and avoids the evaluation of the singular vertices. The next main elemental
operation is the di�erentiation. It is known that in the physical coordinate system the bases
can be represented through Lagrange polynomials (hp) and thus collocation di�erentiation can
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be used. The di�erentiation is performed in the reference coordinate system equivalent to the
FEM method such that it is �rst performed in the collapsed coordinate system as

@u
@�1
(�GLJ1 ; �GRJ2 ; �GRJ3 )=

Q∑
i
u�
pqr(�

GLJ
1 ; �GRJ2 ; �GRJ3 )

@hp(�GLJ1i )
@�1

�(�GRJ2i )q�(�
GRJ
3i )r = D�1Bû

and then is transformed onto the reference system through the chain rule⎛
⎜⎜⎜⎜⎜⎜⎜⎝

@
@�1
@

@�2
@

@�3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

4
(1− �2)(1− �1)

@
@�1

2(1 + �1)
(1− �2)(1− �3)

@
@�1

+
2

(1− �3)
@

@�2
2(1 + �1)

(1− �2)(1− �3)
@

@�1
+
(1 + �2)
(1− �3)

@
@�2

+
@

@�3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

to be treated as in the FEM. A speci�c implementation of the derivative treatment which
combines precalculation of the derivatives of the bases and the tensor-product factorization is
explained in Section 5.3.
Having de�ned the elemental operations, the basic elemental matrices are introduced. Firstly,

the mass matrix is an inner product of the bases de�ned as: M = (B)TWB, where B is the
matrix of the velocity bases evaluated at the quadrature points and W is a vector of the weight
and Jacobians. Secondly, the sti�ness matrix is speci�ed as the inner product of derivatives
of the bases and is de�ned as

A = (DxB)TW(DxB) + (DyB)TW(DyB) + (DzB)TW(DzB)

where Dx;y;z are the collocation derivative matrices evaluated at the quadrature points. A �nal
matrix is de�ned as the inner product of a velocity base with a derivative of the pressure
base and is expressed as

Di = (DxiBp)TWB

where Bp and B are the pressure and velocity base matrices, respectively. Because modal
bases are used, the coe�cients do not represent a physical nodal point value, thus transfor-
mations between the coe�cient and physical spaces are introduced. Two transformations are
de�ned, mapping the modal bases onto the physical space and conversely mapping a physical
space onto the modal space. The backward transformation represents the summation of all
modal functions with their corresponding coe�cients in order to yield a physical representa-
tion of the solution at a given point distribution. This is represented by u�(�out1 ; �out2 ; �out3 )=∑Ndof

i=1 ûi�i(�out1 ; �out2 ; �out3 )=B
∗û, where B∗ is a matrix of all the bases evaluated at speci�ed

points and û is the vector of coe�cients. The backward transformation, whether used in form-
ing matrices or in determining the physical solution, employ the sum factorization technique
to reduce the operation count from O(P6) to O(P4), it is explained in Section 5.3. Conversely,
the forward transformation renders a modal representation of a physical function. This oper-
ation is de�ned as û = ((B)TWB)−1BWf, where f is the physical space representation of a
function evaluated at the quadrature points. This approach can be regarded as the inversion of
the mass matrix represented by M = (B)TWB onto the inner product of the forcing function
f and the bases.
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In order to solve the Navier–Stokes equations, continuity between elements needs to be
enforced. A simple case of continuity enforcement on an edge between two elements is
shown in Figure 1. It is seen that in the top picture of Figure 1 the two functions do not
match and thus continuity would not be enforced. On the contrary, it is seen that in the
bottom picture of Figure 1 the edge functions match and continuity is enforced. Thus a
requirement for continuity is that the modal bases on the boundary must match. On a face
this is more complex as the local coordinates systems can have di�erent orientations. Certainly
this orientation constraint can be satis�ed trivially by a special renumbering procedure, rather
than a complex global solution. This renumbering scheme states that the lowest number in
the element is set to the vertex D and the second lowest number is set to the vertex C while
the vertices A and B are chosen such as to ensure a positive Jacobian. This ensures that the
orientation of the coordinate systems matches but not necessarily the directions. Moreover,
it is known that after this renumbering only certain edges and certain face modes are not
continuous. Thus a sign vector is introduced to track the matching and non-matching modes.
This sign vector is then used in the global assembly procedure to ensure continuity globally.
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Figure 1. Continuity enforcement on an edge, representing a non-matching
edge (top) and a continuous edge (bottom).
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5. SPECIFIC IMPLEMENTATION DETAILS OF THE SPECTRAL ELEMENT METHOD

This section describes the speci�c implementation of the method developed by Sherwin and
Karniadakis [15, 16], and introduces our approach. The explanations of our implementation,
are included to portray di�erent approaches in implementing the spectral element method. In
addition, parallelization through the multilevel Schur complement method is explained. Finally,
some challenges in the post-processing steps, needed to analyse higher order elements, are
presented.

5.1. Continuity enforcement

The continuity enforcement problem is described in the previous section where a sign vec-
tor used by Sherwin and Karniadakis [15, 16] is introduced to track odd mode negations in
order to enforce continuity. Ainsworth [17] developed another continuity enforcement proce-
dure, in which the elements are collapsed onto two reference elements through a renumbering
procedure. Then the elemental operations are modi�ed, respectively, for the two reference
elements, ensuring global continuity. Both of these procedures require the modi�cation of the
global assembly procedure as well as extra storage to classify the modes into groups which
require special modi�cations and groups not requiring such modi�cation. A modi�ed con-
tinuity enforcement procedure is used in this study in order to reduce the complexity and
memory requirement. This means that continuity is purely enforced through the local and
global numbering of the vertices, which in turn guarantees continuity of the higher order
functions. A vertex naming convention is shown in Figure 2, where the vertex A is de�ned
at the collapsed coordinate (−1;−1;−1), vertex B is de�ned at (1;−1;−1), vertex C is de-
�ned at (−1; 1;−1) and vertex D is de�ned at (−1;−1; 1). This procedure �rst starts with the
standard renumbering operation, which assigns the lowest global number to vertex D and the
second lowest global number to vertex C. Thus matching the orientations of the collapsed
coordinate systems. This procedure still leaves the problem in matching the directions of the
collapsed coordinate systems. Indeed due to the construction of the collapsed coordinate sys-
tem both the �2 and �3 directions match after the renumbering, leaving only the direction

Figure 2. Vertex naming convention.
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of �1 to be matched. Note that any edge with a non-matching mode will always be shared
with an AB edge. Speci�cally only the AB edge will have a non-matching function, while
other shared edges will have matching functions. This means that by interchanging the global
numbering of the A and B vertices, the direction of the �1 coordinate is changed. In other
words the �nal step of the continuity enforcement procedure interchanges the A and B vertices
on all non-matching AB edges. Altogether this implementation enforces the continuity as a pre-
processing step, just through renumbering, and does not require any modi�cations to the global
assembly operations. The method was tested on a wide variety of meshes, and continuity was
always ensured. Nevertheless, a simple continuity test, which checks if all functions match,
is always performed after the pre-processing step to con�rm elemental continuity.

5.2. Reference coordinate system and curved elements

The reference coordinate system provides a valuable analogy between the FEM and SEM.
However, it is not required for the SEM as all of the elemental operations can be de�ned
purely in the collapsed coordinate system. Thus the implementation in the current study drops
the reference coordinate altogether. This means that a simple linear element in the physical
coordinate system can be mapped from the collapsed coordinate system as

X(�1; �2; �3)=XA�A(�1; �2; �3) +XB�B(�1; �2; �3) +XC�C(�1; �2; �3) +XD�D(�1; �2; �3)

where X denotes the coordinates of the respective vertices. Moreover, the removal of the
reference coordinate system simpli�es the elemental operations, as they can be performed in
the collapsed coordinate system and afterward mapped onto the physical coordinate system.
The integration in the physical coordinate system then simpli�es to

∫
�
u(x; y; z)@x=

∫ 1

−1

∫ 1

−1

∫ 1

−1
u(�1; �2; �3)

∣∣∣∣ @(x; y; z)
@(�1; �2; �3)

∣∣∣∣ @�1 @�2 @�3
=

QGLL∑
i

QGRL∑
j

QGRL∑
k

u(�0;0i ; �0;0j ; �0;0k )Jx→�w0;0i w0;0j w0;0k

where the weights are now calculated with �; 	 constants being zero, and the Jacobian is
calculated directly between the physical and collapsed coordinate system. The derivative cal-
culation discards the mapping to the reference coordinate system and is performed on the
collapsed coordinate

@u
@�1

=
Q∑
i
u�
pqr(�

GLJ
1 ; �GRJ2 ; �GRJ3 )

@hp(�GLJ1i )
@�1

�(�GRJ2i )q�(�
GRJ
3i )r = D�1Bû

@u
@x
=

@u
@�1

@�1
@x

+
@u
@�2

@�2
@x

+
@u
@�3

@�3
@x

where the derivatives of collapsed coordinates with respect to physical coordinate system are
evaluated similar to the FEM.
Equally important, the spectral element method can represent complex geometries through

expanding the mapping between the physical and collapsed coordinate systems by including
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higher order modes. This is especially important for complex geometries such as in this case of
pipes with two planar curvatures, and will be described brie�y. By using the same expansion
order as the velocity bases, the higher-order mapping is given by

X(�1; �2; �3) =
∑
pqr
X̂�pqr(�1; �2; �3)

where X̂ is a vector of coe�cients for the physical coordinate directions. Such a mapping
is able to capture complex geometries, as with increasing order the number of expansion
functions increases. These coe�cients are determined by performing a modi�ed local forward
transformation as described by Sherwin and Karniadakis [15, 16], similar to projecting bound-
ary conditions. Although this method permits representation of complex geometries, there
exists no high order mesh generators which mesh complex geometries. Hence the geometry
of the model pipe needs to be de�ned through a transformation function of a straight pipe,
in order to capture the complexities of curvature and torsion accurately.

5.3. Derivative calculation

A di�erent approach to derivative calculations is employed, then originally presented by Sher-
win and Karniadakis [15, 16]. The original approach performs the derivative calculation in the
physical space by employing Lagrange polynomials and requires the evaluation of a variable
at the given quadrature points, which are also the points on which the Lagrange polynomials
are de�ned. This evaluation is performed through backward transformation given by

u�(�1i ; �2i ; �3i) =
M∑
pqr

ûpqr�pqr(�1i ; �2i ; �3i)

which requires M operations for each quadrature point. However, by decomposing the basis
functions into their primary functions the resulting operation count is decreased. This procedure
is called tensor-product factorization and is de�ned as

u�(�1i ; �2i ; �3i)=
P∑
p

P∑
q

P∑
r
ûpqr a

p (�1i) 
b
pq(�2i) 

c
pqr(�3i)

fpq(�3i)=
P∑

r=0
ûpqr c

pqr(�3i)

fp(�2i)=
P∑

q=0
 b
pq(�2i)fpq(�3i)

u�(�1i ; �2i ; �3i)=
P∑

p=0
 a
p (�3i)fp(�3i)

It reduces the operation count for obtaining the physical variable at a given quadrature point
distribution from O(P6) to O(P4) by performing the summation in the given steps, although
it requires extra memory for two O(P3) arrays for the temporary variables fpq and fp.
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Thus the original method for evaluating the derivatives in physical space using collocation
di�erentiation is given by

@u
@�1
(�1i ; �2j; �3k) =

Q∑
l

Q∑
m

Q∑
n

@hi(�1l)
@�1

�jm�knu�(�1l; �2m; �3n) =
Q∑
l

@hi(�1l)
@�1

u�(�1l; �2j; �3k)

and requires O(P4) operations to obtain the derivative at the quadrature points distribution if
the physical value distribution u� is known.
A di�erent implementation is used in this study, where the derivatives of the bases are

precalculated, similarly as done in the FEM. This avoids the need to perform collocation
di�erentiation and is performed straight on the modal bases as

@u
@�1
(�1i ; �2i ; �3i) =

M∑
pqr

ûpqr
@�pqr

@�1
(�1i ; �2i ; �3i) = D�1 û

where D�1 is the matrix of the derivatives of the bases evaluated at the quadrature points.
Furthermore, this operation can be performed using tensor-product factorization as described
previously to reduce the operation count to O(P4). The main advantage of this method is that
if only the derivatives are required, they can be obtained at the expense of O(P4), compared
to two O(P4) operations if collocation di�erentiation is used. This is because u� is needed
before collocation di�erentiation is performed. Moreover if the derivative is just needed at one
point (such as in post-processing function) or not de�ned on the quadrature point distribution,
the precalculation method is more e�cient. Although for cases where the solution and its
derivatives are needed (such as in convection operator evaluations) at the quadrature point
distribution, the collocation method performs these evaluations more e�ciently.

5.4. Parallelization

Parallelization is performed by using the METIS library to perform the domain decompositions
and the MPI library for communication. All of the communications employ asynchronous
communication modes, thus interleaving the cost of communication with computation. This
means that �rstly the required operations are performed on the shared modes, and while these
results are being sent, the operations on the local only modes are executed.
The parallel e�ciency is increased further by using the Schur complement method to de-

couple the interior modes from the boundary modes. It is known that the interior modes are
zero on the boundaries and are only de�ned in the interior. Consequently, these modes are
not connected globally and are solved locally. This means that a matrix inverse operation is
performed in two steps

(Mb − McM−1
i MT

c )xb=fb − McM−1
i fi

Mixi=fi − MT
c xb

where Mi is the local matrix of interior contributions, Mc is the global matrix of boundary-
interior contributions and Mb is the global matrix of boundary contributions. The biggest
advantage of this method is that the Cholesky decomposition of the local interior matrix Mi

is stored, thus reducing the computational e�ort per timestep. Furthermore, all of the matrix
products, such as the Schur matrix (Mb − McM−1

i MT
c ) and McM−1

i are performed locally on
each parallel processor. The global matrix is only de�ned on the boundary modes and is
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constructed through the global assembly procedure of the local Schur matrices. This global
matrix is then solved using the conjugate gradient method to obtain the solution of the global
boundary modes. After solving the global system the interior modes are solved locally on
each processor without requiring any communication. The speedup gain is not only achieved
through better parallelization but also through lower condition number of the global Schur
system compared to the global matrix, resulting in less conjugate gradient iterations.
This solution strategy is improved further by performing a second level Schur complement

on the boundary modes. Although the Schur complement method is expensive in terms of
memory usage, current parallel computers have ample memory resources available. Thus the
strategy proposes to use the available memory on parallel computers to its fullest in order to
reduce the computation and communication cost of performing a matrix inverse. Furthermore,
it should be mentioned that by just increasing ‘virtual processors’ (or threads) on each com-
putational node, the memory requirement can be decreased, but at the same time resulting in
higher communication and computation cost at each timestep.
The Schur global boundary modes are decoupled further, by noting that each parallel pro-

cessor possess shared modes as well as local only modes. Note that the local only modes need
not be connected globally, and can be solved locally. Firstly the global Schur complement
matrix is de�ned as S = AT(Mb − McM−1

i MT
c )A, where the operation AT · · ·A represents a

global assembly operation. This system is decomposed into: shared–shared contributions SSS,
shared–local contributions SSL and local–local contributions SLL, while the global boundary
modes are decomposed into local and shared contributions as xb = ( xbSxbL

). This new system is
solved in three steps such that

(SSS − SSLS−1
LLS

T
SL)xbS =fbS − SSLS−1

LLfbL

SLLxbL =fbL − SSLxbS
Mixi=fi − MT

c xb

The �rst step represents a global solve for all of the shared modes, it is solved using a global
conjugate gradient method and requires communication between processors. However, the
next step corresponds to �nding a solution of all the local boundary modes and is performed
locally without requiring any communication. Finally, the interior modes are solved locally
to complete the solution procedure. A Cholesky decomposition is performed on the local–
local global Schur complement system thus reducing the computational expense per timestep.
The second level Schur complement system increases the e�ciency of the parallelization
and decreases the computational expense of each timestep. However, the �rst level Schur
complement system increases the e�ciency only for order higher then P = 4 when interior
modes are present, thus o�setting the higher computational e�ort of higher order expansions.

5.5. Higher order post-processing

Current state of the art spectral element visualization software displays directly the data using
linear combinations of texture maps and texture shaders [18], thus representing higher order
polynomials directly through pixels. Although this is a very novel and direct approach, it
is not suitable for rapid implementation. Thus an implementation is developed which uses
freely available visualization packages in order to achieve postprocessing capability of spectral
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element data without needing advanced graphics programming skills. A similar method has
been employed by Fisher [19], although on structured meshes.
The implementation used in this study �lls a higher order element with linear elements, thus

capturing the higher order data. Modal bases allow for the mapping of a physical solution onto
any point distribution. Thus for order p = 3 which possesses 20 modes, 20 points are chosen
and distributed at equal distances in the tetrahedron. These points are then linked to form 26
linear tetrahedrons. This simple procedure captures the higher accuracy of the method as well
as curvilinear boundaries with the use of currently widely available low order visualization
packages.
Although the above-mentioned procedure allows for visualizations, further postprocessing

operations need to be de�ned in order to capture the higher accuracy of the processed data.
Most of these operations require a basic procedure: �nding the respective collapsed coor-
dinate from a given physical coordinate. This operation is simple for linear elements and
employs normals of the faces, however by using curvilinear elements the resulting mapping
becomes complicated and an inverse function cannot be found easily. The mapping function
is represented as

X(�1; �2; �3) =
∑
pqr
X̂�pqr(�1; �2; �3)

where X, the physical coordinate vector, is given and X̂ the modal coe�cients are known.
This approach requires that the collapsed coordinates �1; �2; �3 are found in order to satisfy
this set of three equations. In order to �nd a solution to these three simultaneous equations a
non-linear Newton method with a constraint of −16�61 is employed. This method converges
in roughly 4 iterations, although it requires the evaluation of all 9 derivatives of the mapping.
Further due to the singularity of the collapsed coordinate system at the vertices C and D
as well as the edge CD, derivatives at those points cannot be found. Thus the Newton
method cannot be applied at those points. Vertices C and D are checked separately to avoid
this problem. Moreover, on the CD edge a one-dimensional root �nding algorithm in the
�3 direction is used, which does not require derivatives, in order to check if the resulting
coordinate lies on the CD edge. This problem of singular points can be avoided by searching
in the reference coordinate system instead of the collapsed coordinate system. By having the
respective collapsed coordinate a backward transformation can be performed to obtain the
physical solution at the given point. Having de�ned the previous procedure, the remaining
post-processing functions can be determined easily. A slice is de�ned through a normal, which
in turn is determined from the transformation function. The solution on a slice is found by
simply solving the previous mapping function with an extra constraint given by the de�nition
of a slice. To perform an integration on the slice a similar procedure is performed, although
the mapping is now solved with two constraints: the de�nition of the slice as well as the
quadrature point distribution needed. By summing all of the solutions at the quadrature points
with respective weights the integral value is obtained.

6. VALIDATION

A validation study is performed on both a manufactured solution as well as the curved pipe
geometry.
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6.1. Validation using a manufactured solution

The Navier–Stokes equations are solved and compared with an exact solution composed of
sine and cosine functions, as they are not part of our expansion bases and provide accurate
convergence results. These functions are manufactured such that they satisfy the continuity
equations and become

u= cos(
x) sin(
y) sin(
z)e−t

v= sin(
x) cos(
y) sin(
z)e−t

w=−2 sin(
x) sin(
y) cos(
z)e−t

p=− 1
8 [cos(2
x) + cos(2
y) + 4 cos(2
z)]e

−2t

By substituting these exact solutions into the Navier–Stokes equations, the required forcing
terms are found. This problem is then solved on a cube ranging from −1 to 1 with periodic
boundary conditions on the cube walls. A mesh convergence study is performed such that the
mesh size is decreased and the expansion order P is kept constant. This study is performed
for di�erent orders with a very small timestep of 10−4 in order to ensure that the time error
is minimized and does not in�uence the convergence. Both the L2 error norm and the H1
error semi-norm are calculated in the coe�cient space with the exact solution coe�cients ûP

being found through a forward transformation. The error norms are de�ned as

�L2 =
√
(ûP − û�)TM(ûP − û�)

�H1 =
√
(ûP − û�)TA(ûP − û�)

where A and M are the sti�ness and mass matrices, respectively. The results for this mesh
convergence studies are shown in Figure 3.
The velocity convergence rates of 3.9–4.0 for the L2-norm and 2.5–2.6 for H1-norm are

calculated for P=3 on the �nest three grid points. For P=4 convergence rates of 4.5–4.6
and 3.7–3.8 are found for L2-norm, H1-norm error norms, respectively. Furthermore, the order
convergence exhibits exponential decay as expected for spectral element method.

6.2. Validation on bend pipe test case

The �ow in a curved pipe is studied next to determine the validity of the code for pipe �ow
problems. The curved pipe is modelled by using a torus, thus not requiring periodic boundary
conditions. This torus is shown in Figure 4, where the curvature ratio is de�ned as being the
ratio of the two radii � = a=R1, such that a is the radius of the pipe cross-section. A pressure
gradient is induced through a forcing term

fx=
4
Re
cos(�)

fy=− 4
Re
sin(�)

fz=0
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Figure 3. Mesh convergence results for the Navier–Stokes problem, L2 error norms (left)
and H1 error semi-norm (right) and order convergence (bottom).

Figure 4. Torus for modelling constant curvature pipe with periodic boundary conditions.
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Table I. Convergence study of friction factor f.

� De Elements Friction factor

0.2 4.463 595 0.853
856 0.902
1269 0.917
2019 0.935
3338 0.963
10 331 0.989
24 613 1.0003
38 981 1.00043

0.1 15.343 1245 0.885
1553 0.885
2210 0.972
3655 0.985
10 799 1.016
20 304 1.032
48 590 1.038

Table II. Comparison of friction factor f values between this work and other authors.

� De Lorrain and Bonilla Austin and Seader Yang and Chang This work
[21] [22] [23]

0.2 4.463 1.002 1.0006 1.00043
0.1 15.343 1.0302 1.0305 1.038

These forcing terms simulate the e�ect of a pressure gradient along the centreline of the pipe
and allows to �nd the friction ratio. A friction ratio is de�ned as the ratio of the curved pipe
�ow rate to that of a straight pipe and is de�ned as

f =
Qc

Qs
=

∫ a
0

∫ 2

0 uc · nr dr d�∫ a

0

∫ 2

0 us · nr dr d�

A mesh convergence study on the friction factor is performed �rstly, this ensures that the
mesh is �ne enough thus minimizing the discretization error. The mesh convergence results
are presented in for third-order elements with a timestep of 10−3 in Table I. These friction
factors compared against result, of other authors are shown in Table II for di�erent curvature
ratios as well as Dean numbers. It is seen that the values agree closely within engineering
accuracy, therefore proving the validity of the code.

7. PIPES WITH TWO CURVATURES

Flows in pipes with two curvatures are studied in this section. This geometric setup allows for
both the variation of curvature and torsion which represents naturally occurring pipes more
accurately and has not been studied previously.
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7.1. Problem description

A model pipe is constructed such that it is de�ned by two radii of curvature R1 and R2.
These curvatures are present in the y–z and x–z planes, respectively. A straight pipe with
cross-sectional radius of one and length of 10 is transformed into the double curved pipe by
using the transformation function for the centreline

x̃=R1 cos
(



(
z − 1
9

))

ỹ=
R1
�

⎛
⎝

√
1−

(
� sin

(
n ∗ 


(
z − 1
9

)))2⎞⎠

z̃=R1 sin
(



(
z − 1
9

))

where z is the centreline coordinate of the original straight pipe, n is the number of periods
and � = R1=R2 is the radius ratio. A constraint (� = (R1=R2)61), forcing the curvature in one
plane to be smaller than in the other plane, is used. This constraint prevents having a mirror
geometry in the other plane. Furthermore, to ensure that the cross-sections on the centreline
of the pipe are circular with the same radius, a second mapping is used such that

x= x̃ − aby + cx√
1− b2

y= ỹ +
√
1− b2y

z= z̃ +
ax − bcy√
1− b2

where x and y are coordinates on the cross-section of the original straight pipe and a; b; c are
the normalized components of the tangent centreline vector such that

ã=
dx̃
dz
= −R1


9
sin

(



(
z − 1
9

))

b̃=
dỹ
dz
=

n
R1�
9

sin
(



(
z − 1
9

))
cos

(



(
z − 1
9

))
√
1−

(
� sin

(
n ∗ 


(
z − 1
9

)))2

c̃=
dz̃
dz
=

R1

9
cos

(



(
z − 1
9

))

a=
ã√

ã2 + b̃2 + c̃2
; b =

b̃√
ã2 + b̃2 + c̃2

; c =
c̃√

ã2 + b̃2 + c̃2

An illustrative geometry is shown in Figure 5 and for a case with n = 2 periods a geometry
is shown in Figure 6. When the radius ratio � = R1=R2 approaches zero the transformation
collapses to a simple curved pipe with a constant radius of curvature R1.
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Figure 5. Pipe geometry with two curvatures de�ned by R1 = 3 and � = 0:5, top view (left top), front
view (right top), left view (bottom left) and diagonal view (bottom right).

Figure 6. Pipe geometry with two periods and two curvatures de�ned by R1 = 3 and � = 0:5, top view
(left top), front view (right top), left view (bottom left) and diagonal view (bottom right).
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A general space curve can be fully described by its torsion and curvature, therefore these
geometric properties are introduced next and the e�ect of transformation variables onto these
properties are demonstrated. The curvature of a curve is de�ned as the length of the rate of
change of the unit tangent vector. It measures the deviation of the curve from the tangent at
each point. The curvature can be calculated from the parametric equation r(z) of the centreline
such that

� =
|ṙ × �r|
|ṙ|3

The torsion � is de�ned as the rate of change of the osculating plane of a space curve. It is
calculated from the centreline equation as

� =

∣∣∣∣∣ : :: :::
r r r

∣∣∣∣∣
|ṙ × �r|2

These values are non-dimensionalized by the diameter of the pipe such that the curvature ratio
becomes k = �D and the torsion ratio becomes � = �D. A pipe is uniquely de�ned by 3
parameters: R1 the primary radius of curvature, � the radius ratio and n the number of periods.
The e�ect of these parameters on the curvature and torsion is shown in Figure 7. It is seen
that with increasing primary radius of curvature R1 the curvature decreases as expected from
the inverse proportionality. Moreover, the e�ect of the radius ratio � is to induce a variation of
the curvature. The torsion exhibits a direct proportionality to the primary curvature radius R1,
thus increasing as the radius is increased. Nevertheless, the main contribution to the torsion
is the radius ratio, which induces a change to the torsion and increases with increasing radius
ratio �. Although the e�ect of the period number n is expected to increase the number of
changes it has a signi�cant e�ect on the curvature and torsion as seen in Figure 8. It is seen
that with increasing the number of periods n the curvature increases drastically with an even
more pronounced e�ect on the torsion. Therefore, it is seen that changes to the primary radius
of curvature R1 result in mostly curvature e�ects, although through high radius ratios � the
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Figure 7. E�ect of the primary radius of curvature R1 and the secondary curvature ratio �
on the curvature � (right) and torsion � (left).
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Table III. Convergence study of pressure drop for double curved pipes.

R1 � Elements Pressure drop

2 0.01 503 2.7726
2767 2.7709
10 595 2.7728
30 066 2.7725

0.25 503 2.7833
2767 2.7811
10 595 2.7816
30 066 2.7814

0.5 503 2.8200
2767 2.8172
10 595 2.8161
30 066 2.8159

0.75 503 2.9040
2767 2.9018
10 595 2.8987
30 066 2.8978

torsion e�ect can be seen. Nevertheless, the main e�ect of the change in torsion is seen in
highly oscillatory pipes with high radius ratios and high primary radius of curvature.

7.2. Results

The in�ow and out�ow boundary conditions for the double curved pipe are set to be a
parabolic velocity pro�le. Furthermore, the Reynolds number was set to be constant at Re=20
in order to study only the geometric e�ects.
A mesh dependence study for the pressure drop in a double curved pipe is performed in

order to assess the accuracy of the solution. These results are presented in Table III, third-
order elements were used at this point with a timestep of 10−3. These results demonstrate

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:849–879



NUMERICAL STUDY OF FULLY DEVELOPED LAMINAR FLOWS 869

that the e�ect of the mesh on the pressure drop is negligible. Furthermore, it is seen that by
increasing the radius ratio � the pressure drop increases.
Typical results obtained for the �ow in double curved pipes are shown in Figure 9 as a

vector �eld of the secondary �ow, for a pipe de�ned by the parameters R1 = 4, � = 0:75 and
n = 1. Classical Dean �ow is seen in these secondary �ow vector plots, however two striking
di�erences are seen. The Dean �ow is angled with respect to the horizontal line and turns.
The vector pointing to the outer wall of the combined radius of curvature and the horizontal
line de�nes this angle. Due to the periodically varying curvature, this angle changes along the
centreline axis and induces the turning of the secondary �ow. Consequently due to the �uid
inertia and change in curvature the secondary �ow does not resemble a classical Dean �ow
as the maximum secondary velocity is pushed towards the pipe wall. This is seen clearly at
the centreline position z = 4:0, where the maximum centreline velocity is found near the wall
and not in the centre of the pipe cross-section as in Classical Dean �ows.
A more detailed analysis of the parameters a�ecting the secondary �ow are presented in

the following subsections mainly focusing on the magnitude and the angle of the secondary
�ow.

Figure 9. Secondary �ow in the double curved pipe de�ned by R1 = 4, � = 0:75, n=1.
Shown at given centreline positions.
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7.2.1. Primary radius of curvature R1 e�ect. The primary radius of curvature R1 is mainly
associated with an equivalent curved pipe. Therefore, all of the studied values are normali-
zed with respect to a curved pipe �ow. This means that the secondary velocity magnitude
is normalized with the equivalent secondary velocity magnitude and represents the percent-
age deviation from the curved pipe solution. Furthermore, the angle is normalized with the
equivalent angle of a curved pipe and represents the percentage deviation from the curved
pipe solution. If the same normalization is performed on the curvature curves, the resulting
normalized curvatures collapse onto one curve. These normalized values for the secondary
�ow magnitude at the centre and the angle of the vector along the centreline of the pipe for
di�erent R1 values are shown in Figure 10. Note that even after normalization the curves with
the same � but di�erent R1 do not coincide but have di�erent positions and values of the
maximum and minimum points. These results are summarized in Table IV. Indeed it was ex-
pected that after the normalization, the e�ect of R1 would be totally accounted for. However,
as noted there still exists a R1 e�ect as the pipe with the smaller primary radius of curvature
R1 = 2 has a higher velocity magnitude than the pipe with R1 = 4, as well as leads by 6–8◦.
Lead is calculated as the equivalent angular lead of the R1 = 4 curve to the R1 = 2 curve.
Speci�cally the minimum position leads by 8◦ while the maximum position leads by 6◦. The
results for the angle demonstrate a similar behaviour, although the magnitude di�erence is
smaller than noticed for the velocity magnitude, but as before the pipe with smaller R1 has
bigger magnitude. Moreover a same leading characteristic is found, where the pipe with R1 = 2
leads by 4–6◦. In general, the R1 e�ect of double curved pipes on the secondary velocity can
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Figure 10. E�ect of R1 on the normalized secondary velocity magnitude (left) and angle (right).

Table IV. E�ect of R1 on the normalized secondary velocity magnitude and angle.

Velocity magnitude Angle

R1 � Min Max Min Lead Max Lead Min Max Min Lead Max Lead

4 0.5 −0:0902 0.2386 −0:1428 0.1875
4 0.8 −0:3115 1.0594 −0:2014 0.3178
2 0.5 −0:0818 0.3793 8◦ 6◦ −0:1937 0.2176 0◦ 6◦

2 0.8 −0:3930 1.3821 8◦ 6◦ −0:2407 0.3335 0◦ 4◦
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Figure 11. E�ect of � on the secondary velocity magnitude (left) and angle (right).

Table V. Curvature e�ect obtained through varying � on the secondary
velocity magnitude.

Min Mag. as % of Max Mag. as % of
� Min Curv. Max Curv. Lead Max Lag Min

0.25 151.983 167.550 5.4 −8:1
0.5 154.094 154.255 4.5 −0:91
0.75 153.833 158.042 5.4 −2:7
0.8 155.775 158.917 6.3 −2:7

be described as with decreasing R1 the magnitude and the angle variation of the secondary
velocity is increased while the curve is shifted right resulting in a leading curve. This e�ect
can be explained by the inertia of the �uid as well as the torsion which was not accounted
for. Firstly the geometry de�ned by a smaller R1 leads to bigger curvature values, which
in turn translate into more drastic geometric changes. The lead e�ect might be caused by
the lagging response of the �uid to the geometric changes. Secondly it was noted that in
pipes with two curvature, torsion is present and it has a direct relationship with R1 as well
as there is a variation of curvature. Therefore, even though the values were normalized with
the curved pipe solution there is the e�ect of increased curvature on the magnitude of the
secondary velocity.

7.2.2. Radius ratio � e�ect. The e�ect of the primary radius of curvature was studied in the
previous subsection. This subsection looks at the e�ect of the second curvature through the
variation of the radius ratio � while keeping the other parameters at R1 = 4 and n=1. Once
again all of the values are normalized with respect to the curved pipe solution in order to
account for the e�ect of primary curvature. The e�ect of varying the radius ratio � on both
the magnitude and angle is reported in Figure 11. It is observed that the magnitude pro�le
resembles the curvature pro�le as shown in Figure 7, thus all of the results are calculated
as percentage of the curvature pro�le to show the torsion e�ect. This curvature e�ect on the
secondary velocity magnitude is summarized in Table V. It is seen that the curvature is the
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Table VI. Curvature e�ect through varying � on the of the secondary velocity angle.

Min Angle as % of Max Angle as % of
� Min Curv. Max Curv. Max Pos. Min Pos.

0.25 476.9 283.4 5.8 2.0
0.5 213.3 121.2 5.8 2.0
0.75 114.3 57.37 5.8 2.0
0.8 100.72 47.68 5.8 2.0

main cause of the magnitude changes with varying �. The maximum and minimum values as
percentage of the curvature values remain about constant at 153–158% with increasing �, thus
stating that the changes follow closely the changes of curvature. Similar results are obtained
about the positions of the maximum and minimum values, the maximum value leads with
constant value of 4.5–6:3◦ in relation to smaller � geometry, while the minimum value lags
by a constant value of −2:7◦. However, a small secondary e�ect is also seen increasing this
maximum and minimum values as percentages of curvature with increasing �. This secondary
e�ect is ascribed to the torsion e�ect. Moreover, the e�ects on the angle are summarized in
Table VI. In fact these values show that there is no curvature magnitude e�ect on the angle,
as even after the normalization the values of minimum and maximum angle as percentage of
minimum and maximum values of the curvature decrease with increasing �, while the position
of these values remains constant. Therefore, this e�ect on the angle can be attributed to the
torsion e�ect as curvature has been ruled out. Moreover, the leading=lagging e�ect once again
needs to be attributed to �uid inertia as for geometries with smaller � or change in curvature
the �uid can respond quicker to the curvature change.
To conclude, the variation of � induces both changes to curvature and torsion. These changes

mainly correspond to an increased magnitude due to the curvature e�ect with a small secondary
torsion e�ects as well as increased angle changed mainly in�uenced by the torsion.

7.2.3. Number of periods n e�ect. Finally, the e�ect of the periods is studied by varying the
number of periods n while keeping the other parameters constant at R1 = 4 and �=0:1. The
e�ects on the magnitude and angle are shown in Figure 12. Previously it was observed that
the number of periods not only increased the number of oscillations of curvature and torsion
but also increased the amplitude of these oscillations. However, from the results presented
it is seen that with increasing the number of periods both the magnitude of the normalized
secondary velocity as well as angle decreases. Nevertheless, those highly oscillatory geometries
are de�ned with rapid changes of the curvature. Thus as noticed before it is expected that the
�uid inertia will reduce the response of the �uid to the geometric changes. This in turn reduces
the curvature e�ect, which is directly linked to the secondary �ow, and thus reduces with it
the magnitudes of secondary velocity and angle. Where in the extreme case of n=6 only
wiggles are seen and not the distinctive oscillations associated with the geometric changes.
Once again in order to observe e�ects other than the curvature, all of the values in the
table are compared as percentages of the curvature values and the e�ect on the magnitude is
summarized in Table VII. Previously it was noted that the increase in the number of periods
increased both the curvature and torsion. However, it is seen that there is no curvature e�ect
on the magnitude as with increasing number of periods there is a signi�cant decrease in both
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Figure 12. E�ect of number of periods n on the secondary velocity magnitude (left) and angle (right).

Table VII. Curvature e�ect due to the number of periods n e�ect
of the secondary velocity magnitude.

n Min Mag as % of Min Curv. Max Mag as % of Max Curv.

2 171.05 1166.73
4 110.81 62.8
6 43.88 9.9

Table VIII. Curvature e�ect due to the number of periods n e�ect
of the secondary velocity angle.

n Min Angle as % of Min Curv. Max Angle as % of Max Curv.

2 3226.01 426.29
4 804.57 30.48
6 156.10 5.06

the maximum and minimum values as percentage of maximum and minimum curvature values.
The e�ect on the angle is summarized in Table VIII. A similar result is observed as for the
magnitude where with increasing number of periods the minimum and maximum angle values
as percentage of the minimum and maximum curvature values decrease. This shows that the
curvature e�ect becomes negligible with increasing number of periods, as expected from the
inertia e�ect.

8. WALL SHEAR STRESS

A very important �ow characteristic especially in blood �ow is the wall shear stress. Studies by
Ethier [20] have shown that the wall shear stress in�uences the vascular endothelial cells and
can lead to atherosclerotic lesions. These lesions form in areas of very low wall shear stress.
Therefore this section will study the wall shear stress on pipes with two planar curvatures,
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Figure 13. E�ect of secondary curvature ratio for R1 = 4. Wall shear stresses for pipes
with �=0:01(a), 0.25(b), 0.5(c), 0.8(d).

which can be a rudimentary model for blood vessels. The wall shear stress is de�ned as
the radial gradient of the tangential velocity component to a given pipe cross-section, and
represents the frictional force onto the wall. This �ow characteristic is calculated through

�wss = t1
@u
@r
+ t2

@v
@r
+ t3

@w
@r

where ti are the tangential vector components. The radial derivative is calculated by introducing
a new coordinate system being de�ned by the two normals and a tangent to a given pipe cross-
section. Moreover, the tangential components are calculated from the transformation function
for the double curved pipe which de�nes the geometry. In order to visualize the results of the
wall shear stress, the pipe wall is unwound to form a rectangle. This means that the vertical
axis presents the cross-sectional angle and the horizontal axis is the centreline length. The wall
shear stress is calculated for di�erent pipe con�guration given by the transformation parameters
R1; �; n, in order to determine the e�ect of the geometry on the wall shear stress. Firstly the
results for a pipe de�ned by R1 = 4 and n=1 are shown for varying values of the secondary
curvature ratio �. These results are shown in Figure 13. It is seen from these results that the
secondary curvature has a signi�cant e�ect increasing both the maximum and minimum wall
shear stress values. Furthermore, it is seen that by increasing the secondary curvature ratio,
larger areas of low and high wall shear stress are present. Secondly, the wall shear stress is
calculated for a pipe de�ned by R1 = 2 and n=1, in order to determine the primary curvature
radius e�ect. These results are shown in Figure 14, where once again the same e�ect of the
secondary curvature ratio is found. These results are summarized in Table IX. Furthermore
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Figure 14. E�ect of secondary curvature ratio for R1 = 2. Wall shear stresses for pipes
with �=0:01(a), 0.25(b), 0.5(c), 0.8(d).

Table IX. E�ect of secondary curvature ratio � on the wall shear stress.

R1 = 4 R1 = 2
� Min �wss Max �wss Min �wss Max �wss

0.01 1.54 2.69 1.24 3.93
0.25 1.53 2.71 1.24 3.96
0.5 1.51 2.77 1.22 4.03
0.75 1.47 2.88 1.19 4.97
0.8 1.46 3.02 1.18 5.54

these results demonstrate that pipes with smaller R1 have bigger variation in the wall shear
stress, in addition the second curvature induced through � produces distinct areas of wall and
high shear stress.
Finally the e�ect of the number of periods onto the wall shear stress is studied. This means

that a pipe de�ned by R1 = 4; �=0:1 is used while the number of periods n is varied. The
resulting wall shear stress is presented in Figure 15. It is seen that by increasing the number
of periods the wall shear stress magnitude increases, as well as areas of low and high wall
shear stress values grow larger. These results are summarized in Table X, where it is seen
once again that by increasing the number of periods the magnitude of the maximum �wss
increases while the minimum �wss decreases.
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Figure 15. E�ect of number of periods on a pipe with R1 = 2; �=0:1. Wall shear
stresses for pipes with n=1(a), 2(b), 4(c), 6(d).

Table X. E�ect of number of periods n on wall shear stress.

n Min �wss Max �wss

1 1.57 2.72
2 1.55 2.73
4 1.40 3.40
6 1.09 5.11

This section seeks to determine the underlying e�ect of the geometric parameters, curvature
and torsion on the magnitude as well as the area of low wall shear stress. A study is performed
where either the average curvature or torsion is kept constant, while the other variable is
varied. Thus �rstly the transformation variables R1; � are varied for the case of n=1, such
that the average curvature value is constant, while the torsion changes. These results are
presented in Table XI, where the minimum and maximum wall shear stress values are listed
as well as the area covered by the low wall shear stress isoline. These results show that a
small increase in the torsion produces large increases in the low wall shear stress area, as
well as decreases the minimum value of �wss. This is especially noticeable for high curvature
values where even small torsion can have larger in�uence on the minimum value and low wall
shear stress area. Therefore it can be said that torsion has a non-linear e�ect, as for values
of high curvatures, very small changes in torsion produce large changes in the minimum wall

Copyright ? 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2006; 51:849–879



NUMERICAL STUDY OF FULLY DEVELOPED LAMINAR FLOWS 877

Table XI. E�ect of torsion on wall shear stress �wss and area of low wall
shear stress while average curvature kept same.

R1 � �� �� Min �wss Area

4 0.001 0.25 0 1.70 1e−5
4.2 0.616 0.25 0.03 1.67 1.03
4.3 0.737 0.25 0.06 1.61 1.77
6.0 0.001 0.166 0 1.83 1e−5
6.2 0.509 0.166 0.15 1.81 1.13
6.4 0.701 0.166 0.40 1.76 2.00
8.0 0.01 0.125 0 1.88 1e−5
8.4 0.616 0.125 1.28 1.84 1.64
8.8 0.825 0.125 4.84 1.77 2.34

Table XII. E�ect of curvature on wall shear stress �wss and area of low wall
shear stress while average.

R1 � �� �� Min �wss Area

4.3 0.417 0.41 0.02 1.73 0.05
4.2 0.443 0.44 0.02 1.71 0.55
4.0 0.500 0.50 0.02 1.69 1.58
6.4 0.424 0.15 0.12 1.83 0.08
6.2 0.461 0.16 0.12 1.81 0.94
6.0 0.500 0.17 0.12 1.80 1.20
8.8 0.390 0.11 0.58 1.88 1e−5
8.4 0.441 0.12 0.58 1.87 0.58
8.0 0.500 0.13 0.58 1.85 1.52

shear stress. However, for smaller values of curvature, a high change in torsion is required
to obtain a similar decrease in the minimum wall shear stress.
Secondly a similar study is performed, although now the average torsion value is kept

constant and the curvature value is varied. These results are presented in Table XII, where
the minimum and maximum �wss values are shown as well as the area of the low shear stress
isoline. These results show that with increasing curvature the minimum wall shear stress
values decreases, resulting in a bigger low wall shear stress area. Moreover, it is noticed that
the e�ect of the curvature is linear as shown in Figure 16, note that a similar change of the
area as well as minimum value occurs for di�erent torsion values if curvature is changed by
a similar amount.
These results demonstrate a linear behaviour of the wall shear stress, thus decreasing the

minimum �wss with increasing curvature. Recall the e�ect of torsion is described as non-linear.
It is seen that for high values of curvature even very small amounts of torsion produced big
decreases to the minimum �wss, while for smaller values of curvature much higher values of
torsion are needed to produce a similar e�ect. In summary, it can be stated that areas of low
wall shear stress will occur at points in a pipe which have both high curvature and torsion
values.
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Figure 16. E�ect of curvature changes onto minimum �wss when torsion is kept constant.

9. CONCLUSION

A model pipe was constructed in order to analyse both the e�ect of changing curvature as well
as torsion. This pipe �ow was solved by employing the spectral element method. The spectral
element method was modi�ed in order to simplify the continuity enforcement procedure to a
preprocessing step. Further the reference coordinate system was removed and the derivatives
calculated analytically. This code was validated �rstly by employing a manufactured solution
to the Navier–Stokes equations, and secondly by comparing with previous results obtained for
a curved pipe test case. The model pipe was analysed by varying the parameters representing
the geometry. It was found that even after normalizing results relative to the curved pipe
solution, an e�ect of the primary curvature radius is observed. This e�ect can be attributed
to the fact that changes in the primary radius of curvature no longer have a dominant e�ect.
Other e�ects such as change of curvature and torsion as well as �uid inertia need to be
considered. The e�ect of the second radius of curvature was studied by changing the radius
ratio. It was found that the curvature provides the primary e�ect on the magnitude of the
secondary centreline velocity, with a weak secondary e�ect governed by the torsion. However
the angle was only governed by the torsion. The angle decreased by increasing the radius
ratio. Moreover, it was found that the curvature e�ect decreases with the number of periods
for both the magnitude and angle due to the �uid inertia e�ect. For a pipe with 6 periods,
there were small amplitude oscillation which do not follow the shape of the geometry, as the
�uid cannot follow the rapid geometry changes. Finally, the e�ect on the wall shear stress
was studied. It was found that curvature has a linear e�ect on the wall shear stress, such
that by increasing the curvature the minimum wall shear stress decreased. However, torsion
exhibited a non-linear e�ect, where for pipes with high curvatures just small change in torsion
was required to decrease the wall shear stress, while for pipes with smaller curvatures much
higher change in torsion was required. Therefore, in order to avoid areas of low wall shear
stress, pipes with high curvature and torsion should be avoided.
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